
��������	
����������	��	��������

Guillaume Brat, Allen Goldberg, Klaus Havelund, Arnaud Venet

ASE Group

NASA Ames



����������	�	�����������

��	��������	�������	��������

False 
Positive

False
Negative

Speed



DS1 Deadlock

Similar pattern to the one that 
Was found using model checking

(loop
(when

(or (/= count (esl::event-count event1))
(warp-safe (wait-for-event event1)))

(setf count (esl::event-count event1))
(signal-event event2)))

Data race
caused by

Missing critical section
caused

Deadlock

Could have been found with data race analysis



Runtime Verification
with Java PathExplorer

Running program

socket

Event stream

Observer



Runtime Verification
Testable Concurrency Analysis

• Deadlock and data race potentials.

• Turning such properties into testable properties.

– High chance of finding errors with few runs

• Standard lock set algorithm:

T1:

lock(a);
lock(b);

T2:

lock(b);
lock(a);

a b

Deadlock:
Graph contains cycle 

Execute program 



Runtime Verification
Testable Concurrency Analysis

• Standard algorithm yields false positives

• Remove false positives by annotating graph
– Lock hierarchy, segments, threads

• Implemented and applied to K9 (35,000 LOC) and ACS - removes false positives

T1:

lock(g);
lock(a);
lock(b);
start(T2);

T2:

lock(g);
lock(b);
lock(a);

a b

T1,{g},s1

T2,{g},s2

No deadlock:
- {g} and {g} overlaps
- s1 must execute before s2

Execute program 



Runtime Verification
Requirements Checking with Temporal Logic

• Requirements formulated in temporal logic.
• Executing program is monitored during execution.
• Logic must be expressive enough to capture interesting properties: 

– Ordering of events: B follows A.
– Real-time properties: B follows A within 3 seconds
– Data properties: B(y) follows A(x)  where R(x,y)

• Logics implemented using rewriting system (Maude).
• Case studies done on K9 Rover (ARC) and DS1 Fault Protection System (JPL).



Runtime Verification
Checking Temporal Logic Efficiently

� First Semantics:
� 100 events : 30 ms (74 K rewrites)
� 1,000 events : 3 sec ( 7,3 million rewrites)
� 10,000 events : > 10 hours (did not terminate over night)

� Second Semantics:
� <= 10,000 events : << 1 sec
� 100,000 events : <= 3 sec
� 100 million events : 1,500 sec (4,9 billion rewrites)

� Second Semantics with “Memo”:
� 100 million events : 185 seconds (230 million rewrites)

Conclusion: an algebraic specification environment
such as Maude can be used not only for prototyping
but also for final implementation.

[](a [](a [](a [](a ----> <>b)> <>b)> <>b)> <>b)
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• Static analysis verifies properties on code without executing it, e.g.,
– Type (assertion) checking
– Run-time errors (arithmetic under/overflow, out-of-bound accesses, non-initialized 

variables/pointers)

• Research:
– Apply PolySpace, an advanced commercial tool based on abstract interpretation, on NASA 

mission code
– Identify technical gaps
– Establish a research plan to address these gaps
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Old: 1/5 (NIV, OVFL)

New: 2UNR 1 NIP 1 OVFL

3OBAI

3OVFL

1 NIVErrors

3.2KLocs17KLocs25KLocsMax Size

ExecutiveHLRCACS+EDLModules

PrototypeUntestedStableMaturity

35KLocs40KLocs200KLocsSize

C++ => C
CCLanguage

K9 RoverISSMPFProject
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• Precision: 
– Array cells merge into one

• Scalability: limited by
– Size (< 20KLocs)

– Pointer analysis

– Multithread combinatorics

• Result interpretation

• Usability

• Base data structure: matrix

• Pointers are mainly used 
– to iterate over matrix elements

– in complex loop structures

• Mostly static data
– Marginal use of dynamically allocated structures

• Several threads of execution

PolySpace 
Limitations
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Specialized pointer analysis
precise for top-level pointers
thread sensitive
Supplement pointer info 
with index range constraints

Thread 1 Thread 2

a()

b()

c()

d()

e()

f()

g()

h()

i()

j()

granularity of algorithms is function
context passing: 

low overhead w.r.t. computation time
Distributed abstract interpretation

proc 1

proc 2

proc 3

Incremental refinement of analyses
build analyses on top of each other

simple analyses for 90% of code
complex analyses refines simpler ones

costly analyses for 10% code left

a()

b()

c()

d()

e()

f()

g()

h()

i()

j()

use JPF to generate scenarios
to illustrate certain errors
and to filter false positives

Smart result interpretation

JPFJPF

i()



$��%������	���!���

2002

2003

2005

2009

Validation of MER

Launch of MER

Technology Commitment 
for MSL

Launch of MSL

CGS Proto

JGS

CGS

CGS+

Run-Time Errors
C Aliasing

Annotations
JPF Interaction
Synchronization

OO Aliasing
Resource Consumption

Combined 
analyses for C++
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• Concurrency: race conditions, deadlocks
• Misuse: array out-of-bound, pointer mis-assignments
• Initialization: no value, incorrect value
• Assignment: wrong value, type mismatch
• Computation: wrong equation
• Undefined Ops: FP errors (tan(90)), arithmetic (division by zero)
• Omission: case/switch clauses without defaults
• Scoping Confusion: global/local, static/dynamic 
• Argument Mismatches: missing args, too many args, wrong types, uninitialized args
• Finiteness: underflow, overflow
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• Goal: apply state-of-the-art static analysis tool to Mars PathFinder
– Assess current commercial capabilities
– Assess potential application to MER
– Identify technological gaps

• Technique: Abstract Interpretation
– Compute a superset of the range of each variable
– Cover all possible paths without executing the code
– Check all computed ranges against the domain of definition of each risky operation
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Shown: static analysis based on abstract interpretation finds all possible run-time errors (e.g., out-of-
bound array accesses, dereferencing through null pointers, illegal type conversions, invalid arithmetic 
conversions, overflow/underflow, non-initialized variables, and access conflicts for unprotected shared 
data), which are difficult to detect through conventional testing.

Control & Data Flow Analysis

Source Code Checking
Compiler Front End

Software Safety Analysis

Propagation Algorithm for
Identifying Run-Time Errors

Concurrent 
Access 
Analysis

Global 
Data 

Dictionary

Software 
Safety 

Analysis

Test cases & drivers

Integration
Testing

Unit-level
Testing

Total Error Coverage Analysis time ~ e (error selectivity)

No input cases! No input drivers!

Sophisticated Static AnalysisConventional Testing

Simple run-time error reporting

Partial Error Coverage
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• 23 modules of stable C code for 200KLocs
– Focused the analysis on two critical modules

• EDL module was shown to be mature:
– No red checks in 15KLocs with 3 threads
– Orange checks were dismissed by manually inspecting separate initialization code

• ACS module was also fairly mature:
– Only 1 red check (NIV) in 25KLocs with 3 threads
– Not critical, but prevented optimization code to execute
– Error is of the same class as the one that caused the crash of Mars Polar Lander


